skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Boregowda, Karthik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Products often experience different failure and repair needs during their lifespan. Prediction of the type of failure is crucial to the maintenance team for various reasons, such as realizing the device performance, creating standard strategies for repair, and analyzing the trade-off between cost and profit of repair. This study aims to apply machine learning tools to forecast failure types of medical devices and help the maintenance team properly decides on repair strategies based on a limited dataset. Two types of medical devices are used as the case study. The main challenge resides in using the limited attributes of the dataset to forecast product failure type. First, a multilayer perceptron (MLP) algorithm is used as a regression model to forecast three attributes, including the time of next failure, repair time, and repair time z-scores. Then, eight classification models, including Naïve Bayes with Bernoulli (NB-Bernoulli), Gaussian (NB-Gaussian), Multinomial (NB-Multinomial) model, Support Vector Machine with linear (SVM-Linear), polynomial (SVM-Poly), sigmoid (SVM-Sigmoid), and radical basis (SVM-RBF) function, and K-Nearest Neighbors (KNN) are used to forecast the failure type. Finally, Gaussian Mixture Model (GMM) is used to identify maintenance conditions for each product. The results reveal that the classification models could forecast failure type with similar performance, although the attributes of the dataset were limited. 
    more » « less